Follow by Email

Wednesday, August 7, 2013

Banking on your voice: Machine stores speech for patient's future use



— The Miami Herald
                
— Carole Shearn isn't quite sure when she will lose the ability to speak, but she is sure of one thing: Her voice will still be heard, even when the words can no longer be spoken from her lips.
The 70-year-old West Palm Beach, Fla., resident was diagnosed with ALS, also known as Lou Gehrig's disease, last October. Her form of ALS weakens the throat muscles first.

The progressive disease has no cure, but at the University of Miami Miller School of Medicine's Department of Otolaryngology, Shearn is the first patient to take part in voice banking - a program where patients who will eventually lose their voice due to diseases such as Parkinson's, ALS and cancer - can record key words, phrases and personalized messages to communicate when speaking is no longer an option.

Shearn uses Tobii Assistive Technology, a speech-generating device, which stores her recordings into categories. She can then use a mouse, touch the screen or even use her eyes to retrieve the sound files.

In case of an emergency, Shearn has even programmed a message saying "get help immediately" and "call 911." Tobii, which is compatible with Bluetooth technology, will call for her.
"Truthfully, I was so amazed when I found out about the Tobii," she said. "It makes me feel good that I can personalize my messages to whomever. It is my lifeline."

ALS is a neurodegenerative disease that attacks the motor neurons. As the disease progresses, these neurons begin to degenerate and stop sending messages to muscles. Eventually, individuals diagnosed with the disease lose the ability to move their legs, arms and body.

According to the National Institute of Neurological Disorders and Stroke, 20,000 to 30,000 people are living with ALS in the United States. The average lifespan for a person with ALS is three to five years.

Because ALS patients lose strength and movement in their limbs, Tobii has a built-in eye tracker. Shearn can sit in front of the device - without moving any part of her body but her eyes - and still communicate effectively.

Jocelyn Odlum, a speech pathologist at the University of Miami, met Shearn at an ALS support group in West Palm Beach and then began seeing her at the clinic. After evaluating Shearn, she got her started on voice banking. Shearn has been recording her voice every day for the past two months.
"Carole is an inspiration," Odlum said. "She took this disease and is doing everything she possibly can to be prepared."

Odlum says that once individuals are diagnosed with ALS, they should see a speech pathologist immediately so they can be introduced to these devices and helped. "Unfortunately by the time people come to see me they have no voice," she said.

Shearn has recorded basic phrases such as "Hello. My name is Carole," and "How was work?" But, she also has recorded some of her other favorite phrases: "What's up buttercup?," "What's new, super glue?," and "You snooze. You lose."

When Shearn was initially diagnosed, she had no idea what ALS was. She also didn't know that the disease had no cure. "That was very hard to hear," she said.

"I had tears in my eyes of course and I asked how long I would have to live and my doctor said he didn't know, three to five years, so we left the office on that," she said.
Shearn's daughter, Jennifer Wagner, had been suspicious of early symptoms she had been noticing: slurred speech and choking spells, even when she wasn't eating. She researched her mother's symptoms and learned about ALS.

"It was very daunting and difficult to read," she said. "I had a pretty good idea of what the disease was and what it was going to entail, and I didn't want my mom to go through that."

Although Shearn can still drive and walk without any assistance, Wagner drives her mother from West Palm Beach to the university. She also started an open Facebook page called Carole's Crusade, where people can become more aware about the disease and follow her mother's progression.

"I know that I cannot cure the disease so my main goal is to bring attention to it," she said.

For Shearn, keeping a positive mindset has helped her cope with the disease, but she acknowledges she is not as hopeful and optimistic as she was eight months ago because she notices herself "getting a little worse."

"I was certain I was going to live past 90," she said. "I would still like to." But if she doesn't, Shearn says she feels she has done everything she has wanted to do - traveled to Rome, Alaska, Paris, England, Italy, Spain and the tip of Africa, been surrounded by good people, and had a successful 36-year teaching career.

"My life has always been about people so I don't crave a lot of outside influence," she said. "Our family is small, but we are tight. That has always been everything to me. I feel my life has been blessed."

Read more here: http://www.sunherald.com/2013/08/07/4854978/banking-on-your-voice-machine.html#storylink=cpy

Tuesday, August 6, 2013

Pupil response may help brain-damaged patients communicate

Via: Los Angeles Times
http://www.latimes.com/news/science/la-sci-retina-20130806,0,4412651.story

August 5, 2013, 8:02 p.m.
 
A study suggests that, even if someone can't blink at will, their eyes can indicate a response to a question.
People with brain damage that has left them mute and motionless may be able to communicate with a system that measures the size of their pupils, a new study has found.

Individuals suffering from "locked-in syndrome" have lost motor control but remain aware and alert. The rare condition usually results when damage occurs to the brainstem, which controls motor function. Stroke, traumatic brain injury and amyotrophic lateral sclerosis (also known as Lou Gehrig's disease) can cause locked-in syndrome.

Many locked-in syndrome patients communicate with an alphabet chart, blinking to indicate their choices as a caretaker points to each letter. Others use devices that measure eye movement patterns representing "yes" or "no." Completely locked-in patients who aren't able to move their eyes at will may be able to use systems that translate brain activity into speech, although these often require surgical implantation and special training.

A new system called the EyeSeeCam measures changes in pupil size that happen involuntarily — even in people who lack motor control — and decodes them into yes or no responses, potentially offering an easier alternative for locked-in syndrome patients, including completely locked-in individuals.

In the 1960s, researchers discovered that pupil size can be used to measure mental effort: The bigger a person's pupils, the harder his or her brain is working. Neuroscientists used these findings to develop the EyeSeeCam, which takes advantage of how people's pupils dilate when they try to solve math problems.

Since this happens automatically, patients don't need to be trained to use the EyeSeeCam, said Wolfgang Einhauser, a neurophysicist at Philipp University of Marburg in Germany who helped develop the device. It's also relatively inexpensive, consisting of just a camera and laptop.

In a trial described Monday in the journal Current Biology, Einhauser and his colleagues asked patients 15 simple questions, such as "Are you 20 years old?" After each question, the computer presented the patient with yes or no options while showing a math problem onscreen.
Patients solved only the problem associated with their response, and the mental effort caused their pupils to dilate. An infrared camera mounted to a headpiece measured their pupil size over time and sent the information to a laptop. A software program immediately translated the measurements into responses based on when they peaked.

When the researchers tested the EyeSeeCam on six healthy individuals, it decoded their pupil sizes into accurate answers almost every time. The researchers saw similar results in three out of seven locked-in syndrome patients, almost all of whom could manage small head movements. With some slight adjustments, it correctly translated the pupil dilations of two additional patients more than 70% of the time.

"We found that quite remarkable," Einhauser said.

Only one out of four patients with more severe locked-in syndrome — marked by more widespread brain damage — finished the trial, and his answers were no more accurate than guessing.
The researchers also tested the EyeSeeCam on a minimally conscious patient with severely impaired cognitive ability. Although he couldn't answer the questions independently, he was able to solve math problems if the researchers pointed at them. The system translated these responses with more than 80% accuracy, suggesting that it could also serve as a diagnostic tool to assess a patient's state of consciousness, the researchers wrote.

Within the next two years, the researchers hope to finish fine-tuning the EyeSeeCam so that it works better for severe locked-in syndrome cases, Einhauser said. They also plan to make the device less cumbersome. It will eventually resemble a small webcam that can be hooked up to a laptop.

Although completely locked-in patients stand to benefit most from the EyeSeeCam, the trial participants still had control over their eye movements, said Niels Birbaumer, a neurophysicist at the University of Tuebingen in Germany who was not involved in the study. As a result, "we have no idea whether pupil size" accurately reflects yes or no responses, he said.

Mark Delargy, a physician at Ireland's National Rehabilitation Hospital, agreed. Although the study controlled for lighting changes and other environmental factors that can affect pupil size, internal variables, such as emotional state, are more difficult to control. Anxiety and pain can cause the pupils to dilate, for example.

But identifying these emotions in locked-in patients is tricky. "They won't tell you any new information," said Delargy, who was not part of the study. "You have to devise a question to enable them to tell you."

The EyeSeeCam's success in the minimally conscious participant has made the researchers confident that pupil dilation can serve as a means of communication, Einhauser said. Now that they've "provided the proof of principle," testing the system on completely locked-in patients is "definitely on the agenda," he said.

Even if pupil size does accurately reflect yes or no responses, the study tested only the EyeSeeCam, so it's undetermined whether it offers an advantage over existing systems, Birbaumer said.
Still, the device "has potential," Delargy said. "This is one of the greatest hopes for rehabilitation of locked-in patients and for the opportunity to give a voice to people who have lost it."
melissa.pandika@latimes.com